中文題目:探討 MIF 蛋白參與幽門螺旋桿菌所促進胃癌細胞之惡化

英文題目: HOXA9 induces cell migration through upregulation of cytokine receptors in human gastric cancer cells

作 者:<u>施翔耀¹</u>,劉忠榮¹,王耀廣^{1,2},郭富珍³,王俊偉^{1,4},盧建宇^{1*} 服務單位:高雄醫學大學附設醫院 胃腸內科¹,高雄市立小港醫院 內科²,義守大學義大醫 院 學士後醫學系³,高雄市立大同醫院 內科⁴

Background: Epidemiological studies report that gastric cancer is one of the most common cancers worldwide, and is also the second leading cause of cancer-related mortality. The poor prognosis of gastric cancer may be partly attributed to the complicated molecular networks operating the aggressiveness of gastric cancer. Helicobacter pylori (*H. pylori*) infection will increase the incidence of gastric cancer (GC). Here we will investigate the expression of MIF in *H. pylori*-infected human gastric cells, and the role of MIF in cell motility and sphere formation in human gastric cancer cells.

Method and Material: We analyze the cytokines in the human gastric cancer cells that are infected by *H. pylori*. The motility of gastric cancer cells was measured using modified Boyden chambers with filter inserts for 24-well dishes containing 8-µm pores. The sphere formation of gastric cancer cells also was observed. Recombinant MIF protein was used to measure the effect on motility and sphere formation in gastric cancer cells.

Result: The results from human cytokine arrays showed that *H. pylori*-infected human gastric cancer cells notably express MIF protein. Treatment of recombinant MIF confirmed the role of MIF in upregulating cell motility and sphere formation.

Conclusion: These results suggest that MIF induces motility and sphere formation in human gastric cancer cells.