中文題目:鈉-葡萄糖共同運輸蛋白-2抑制劑恢復糖尿病腎臟之 RBP4 接受器訊息 及腎臟的傷害

英文題目:Sodium-glucose cotransporter 2 inhibitor retrieves disruption of RBP4 receptor signals and renal damage in kidney of diabetes

作 者:賴嘉緯¹,陳肇閎¹,郭汶甄²,洪薇雯¹,林昆德¹,李美月¹, 李宇力¹,顏詩容¹,徐瑋豪¹,姜和鈞¹,許乃薇¹,蕭璧容¹,*辛錫璋¹ 服務單位:¹高雄醫學大學附設醫院新陳代謝內科;²高雄醫學大學附設醫院血脂 研究中心

Background: Sodium-glucose cotransporter 2 inhibitors (SGLT2 inhibitors) have been demonstrated to capably lower CV events, mortality and albuminuria in type 2 diabetes. However, the mechanisms of these benefits from SGLT2 inhibitors are still speculative. In the kidneys and artery of dyslipidemia, we found that the perturbation of retinol-binding protein 4 receptor (RBP4R) signals can cause dyslipidemia-related renal and vascular disease. In this study, SGLT2 inhibitor was investigate to attenuate renal damage and reverse the perturbation of RBP4 receptor signals in high glucose-cultured HEK cells and in the kidney of *db/db* diabetic mice.

Methods: 23 week-old mice were subdivided into: (1) control (n=3); (2) control + empagliflozin (10 mg/kg/day) for 2 weeks (n=3); (3) *db/db* + insulin (lantus 0.5 U/day) (n=3); (4) *db/db* + insulin (lantus 0.5 U/day) + empagliflozin (10 mg/kg/day) for 2 weeks (n=4). Blood glucose values of 4 groups were 60.3 ± 16.7 , 63.0 ± 6.6 , 313.3 ± 49.2 , 234.3 ± 19.4 mg/dL at the end of study, respectively. The expression of SGLT2, p-JNK1, p-Smad2, TGF β , collagen 1, coallagen 3, RAR α , CRBP1, LRAT and CRABP were measured by Western blot. Retinol, retinal and retinoic acid were measured by enzyme assay. SGLT2, TUNEL and trichrome stain were performed by immunohistochemistry.

Results: Empagliflozin can reduce the increase of albumin/creatinine ratio and reverse the increase of SGLT2, p-JNK1, p-Smad2, TGF β , collagen 1, collagen 3, TUNEL and trichrome stain in the kidney of *db/db* mice while empagliflozin can retrieve the disruption of RBP4 receptor and retinol signals, including retinol, retinal, retinoic acid, RAR α , CRBP1, LRAT and CRABP. In high glucose-cultured HEK cells, SGLT2 inhibitor reversed the increase of SGLT2, STRA6, collagen 1, and apoptotic cell, and retrieved the suppression of retinol signals caused by high glucose. **Conclusion**: SGLT2 inhibitors can attenuate renal damage and rescued the perturbation of RBP4 receptor/retinol signals in kidney of diabetes.